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Abstract

Societal considerations make sustainable urban planning in the age of energy and digital revolution paramount. By
using state-of-the-art methods for analyzing massive datasets, such as Artificial Intelligence (AI) and Machine
Learning (ML), we may get a better grasp of past data and more effectively forecast future occurrences using
information gathered from IoT devices. The effects of energy transformation and environmental policy were
examined, as were the long-term consequences of specific activities, using a multi-dimensional historical analysis of
air pollution that this research used. Predictions of air pollution were also made using ML methods that included
geographical considerations. Incorporating data from numerous sites and assessing the effect of neighboring sensors
on predictions, this research used many low-cost air sensors categorized as Internet of Things (IoT) devices.
Regression models, Deep Neural Networks (DNNs), and ensemble learning were among the ML techniques
examined. There was an investigation into the feasibility of using such forecasts in open-source I'T mobile systems.
The study took place in Krakéw, Poland, a city with a long history of air pollution and a UNESCO World Heritage
Site. Additionally, Krakéw is in charge of creating clean mobility zones and banning the use of solid fuels for heating.
According to the study, increasing the city's population has no negative effect on PMx concentrations. The main
aspect in bettering air quality, particularly for PMx, is shifting from coal-based to sustainable energy sources.
Transportation has a less significant impact. Using linear ML models yields the best results when attempting to
forecast infrequent smog episodes. Building a smart city that considers the effects of air pollution on quality of life
may be greatly advanced by acting on the findings of this study.

Keywords: Big data analytics, Sustainable energy shift, Smart urban systems, Machine learning algorithms, Air
contaminants, Urban growth.

1| Introduction

Collaborative efforts across fields such as geography, political science, and environmental engineering are necessary for
the establishment of smart cities. A clean environment, high living standards, easy access to education, and efficient
policymaking are the four pillars upon which a fulfilled life rests [1-4]. According to studies, people's quality of life is
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greatly affected by environmental comfort, especially air pollution [5], [6]. It is necessary to have a comprehensive
worldwide strategy for urban development in light of the growing urbanisation and environmental problems [7], [8].
Particulate matter analysis is crucial for well-balanced city design, according to Liang et al. [9]. The lack of studies
examining the effects of air pollution over the long run in smart city aspirants was highlighted by Jonek-Kowalska [10].
Building more cities might lead to a rise in energy consumption. Air pollution may be worsened depending on certain
energy mixtures [11]. In 2021, hard coal accounted for about 22% of Poland's home energy consumption, far more than
the 2.5% average throughout the EU [12]. In order to determine how the energy shift will affect air pollution, cutting-
edge technology and Internet of Things (IoT) sensors are required.

Air pollution has been a problem in Krakéw for a long time. At first, pollution came mostly from the metalworking
sector, but now, heating with fossil fuels is a major contributor [13], [14]. The primary pollutant throughout the winter
continues to be solid fuels, even if their usage is completely forbidden [15], [16]. Coal accounts for 50% of PM10 in
winter and 20% in summer, contributing to its above 40% carbon content. Transportation by automobiles ranks second
[17]. The carbon percentage is 30% from natural sources throughout the year [18]. The city is becoming more polluted
as outside pollutants make their way in, particulatly during the winter months [19]. Part of the reason for this is the city's
location, which is influenced by the nearby hills and the Carpathian Mountains to the south [20], [21]. Tourists and locals
alike are feeling the effects of the problems plaguing Krakéw, a city on the UNESCO World Heritage list. There have
been attempts to sustainably revive the tourist business since the COVID-19 epidemic caused a drop in the industry
[22]. Krakéw is one of the most polluted cities in the world due to its occasional smog occurrences, which may discourage
visitors, particulatly those worried about contracting the COVID-19 virus [23], [24]. Economic and public health
advantages would be added to the city's air quality improvement efforts. By addressing the problems of air pollution,
Krakéw hopes to become a smart city with contemporary, comfortable living circumstances [25], which will increase its
appeal to visitors. Plus, the mobywatel system [26] was put into place in Poland. It's a digital platform that any person
may use, and it provides real-time data on air pollution levels. Thanks to this breakthrough, it may soon be possible to
show how zero-emission regulations affect the environment in a concrete way. It has the potential to change people's
perspectives and make them think that sustainable city planning is possible. The information gap highlighted by Jonek-
Kowalska [10] may be filled with the use of this data.

In this research, we use big data from several sources to identify the most effective methods for forecasting very unusual
spikes in pollutant input and to evaluate potential causes impacting air pollution. In this age of energy and digital change,
the primary concern is how to steer policymaking towards the most efficient and sustainable use of these technologies.
Because of its location in a nation whose energy system is mostly dependent on coal, Krakéw provides a useful example

for other places throughout the globe to follow when enacting stringent rules in accordance with EU requirements.

There are two sections to this part, and they both seek to fill a mental void. In order to determine what occurred and its
effect on pollution levels during the last decade, we first conducted a historical, descriptive, and diagnostic study of data
pertaining to population changes, different kinds of transportation, and heating types. In the context of energy policy,
this is of the utmost importance for future informed city planning. From a public health standpoint, the second half is a
predictive and prescriptive study, where we examine the possibility of several methodologies to best anticipate smog
outbreaks, which are relatively infrequent but substantial. Such instances are anomalies in data analysis, necessitating the
use of suitable contemporary approaches due to the frequent ineffectiveness of more conventional procedures in these

contexts. Here, we looked at how various neural network designs fared against the autoregressive moving average.
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This study is unique because it merges two distinct but related fields: Sustainable urban planning and sophisticated
Artificial Intelligence (Al)-assisted spatial analysis of massive data related to air pollution, with a focus on energy
transition. For two key reasons, we settled on Krakow as our European benchmark city: 1) Krakow is distinct from other
cities that have implemented anti-smog laws because it is geographically separated from adjacent places that do not, 2)
The city is situated in a nation that has and will continue to have a high priority for moving away from energy production
that relies on coal. Problems in properly predicting, communicating, and developing solutions that are good for society
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must be addressed, and methods must be put in place to evaluate the beneficial impacts of energy transformation on
smart city development. The goal of this study is to analyse the best methods for predicting air pollution, which will help
with a variety of tasks, including alerting locals, preparing for change, and assessing the effects of that change.
Additionally, we looked at past data while keeping in mind a variety of variables that can affect PMx air pollution,
including population, vehicle count, and the condition of public transit. Furthermore, we took into account the results
of the initiative to alter the energy composition of residential heating systems in the urban region. In order to build
smarter cities that learn from their mistakes and make better ones in the future, this study will use big data and Machine
Leatning (ML)/AI techniques. In order to do this, we will use ML approaches that are both efficient and dependable to
perform statistical analyses on spatio-temporal data. In order to address the question of whether dense spatio-temporal
time series can effectively anticipate rare smog episodes, our study will examine the effects of population changes,
different forms of transportation, and energy policies on air quality.

2| Materials and Methods

2.1| Urban Development and Energy Transition

A quantitative study of the measures implemented by the Krakéw City Council and the Chief Inspectorate for
Environmental Protection to reduce atmospheric air pollution was carried out using data obtained from Statistics Poland
[26], accessed on May 10, 2024. Factors such as the city's population in the relevant years, statistics on private and public
vehicle travel, and long-term PM2.5 trends were all included in the research [27], [28]. Public transport metrics used
included the number of bus and tram lines and their lengths in kilometres, while data on registered passenger cars was
based on the total number of vehicles. We also took into account data on bike traffic, although it was limited to linear
infrastructure, i.e., the total length of bike lanes. The research did not include any point infrastructure, such as bike rental

stations, since the city does not yet have a bike rental system in place.
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2.2 | Machine-Learning Data Pipeline

The need to build data processing pipelines that ate repeatable, maintainable, and modular is growing in today's ML
environment. This method facilitates better project management, rapid adaptability to changing needs, and increased
project efficiency and scalability [31], [32]. As shown in Fig 7, a complete pipeline was created as part of this project.

The four main sections of this pipeline are preprocessing, feature engineering, modelling, and XAI/evaluation.

Preprocessing

Feature
engineering

Modeling

XAl & Evaluation

Fig. 1. Overview of the ML data pipeline used in this research.
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To make sure the data is resilient against outliers, we used a robust scaler [32] to scale it and interpolate missing values
in the preprocessing sub-pipeline. We paid special attention to retaining unusual selections since they are important for
our research. In order to capture the intrinsic periodicity in characteristics like wind direction and time of day, cyclic
features were constructed during the feature engineering process. Not only that, but Krakéw's social and holiday events
were included, along with elements like cardinal wind direction and dawn and sunset timings. Additional PM2.5
components, including trend and seasonality, were included based on STL decomposition [27], [33]. To make the
prediction model better, we included lag characteristics developed using autocorrelation and Exploratory Data Analysis
(EDA). The modelling step included setting up a model factory that could build several models from the Darts library
[34] with user-specified settings and parameters, allowing for systematic optimisation and testing. Regression measures
were used to evaluate the performance and dependability of the model during backtesting with expanding window
optimization [35], [36]. Model residuals and XAI studies, including methods such as Shapley Additive exPlanations
(SHAP) [37], wete also documented.

2.3 | Machine-Learning Forecasting

Global forecasting models were used in the research. This method allows for the simultaneous building of a single
prediction model for several time series that are located in different parts of the world. Its goal is to minimise the noise
that each series might bring by capturing the essential patterns controlling the series. This method is stable when
extrapolated to other time series, simple to maintain, and computationally efficient. Having a superficial familiarity with
the unique traits of each series is a price to pay [38].

2.3.1|Models

Twelve different models were first tested in this investigation; five were ultimately chosen for parameter adjustment
according to their performance. A total of 455,520 measurements were used to train the models, including data gathered
from 52 sensors throughout the world. From 00:00:00 on January 1, 2022, until 00:00:00 on January 1, 2023, each sensor
logged 8760 readings. Linear models like ridge regression, which add L2 norm loss functions to traditional linear
regression, are part of the first category [32]. We looked at both standard linear models and more advanced ones tailored
to time series, including DLinear and NLinear. In order to make a final forecast, the DLinear model breaks down the
input data into its trend and seasonal components. It then processes each component using single-layer linear
transformations. The model works especially well with data that is heavy on trends. The NLinear model increases data
adaptability and overall model performance by reintegrating the final value of the sequence after transformation, which

improves adaptation to data changes [39]. This is done before processing the data via a linear layer.

Linear models like ridge regression, which add L2 norm loss functions to traditional linear regression, are part of the
first category [32]. We looked at both standard linear models and more advanced ones tailored to time series, including
DLinear and NLinear. In order to make a final forecast, the DLinear model breaks down the input data into its trend
and seasonal components. It then processes each component using single-layer linear transformations. The model works
especially well with data that is heavy on trends. The NLinear model increases data adaptability and overall model
performance by reintegrating the final value of the sequence after transformation, which improves adaptation to data
changes [25], [40], [41]. This is done before processing the data via a linear layer. A variety of sophisticated deep learning
models were also included in the assessment. These included transformers like the Temporal Fusion Transformer (TFT)
and variations of Recurrent Neural Networks (RNNs), including GRU, LSTM, and NBEATS. With fewer trainable
parameters, the GRU—a simplified version of the LSTM—can save training time but may suffer in complicated
situations due to its reliance on update and reset gates to control the flow of information. To accurately represent
temporal dependencies, the TFT makes use of the transformer architecture, which incorporates a probabilistic
component that is particulatly helpful when predicting time series data with inherent uncertainties and an attention
mechanism that is good at combining both global trends and local fluctuations [42], [43]. The transformer architecture

has been shown to outperform traditional RNNs in certain time series forecasting tasks.
2.3.2| Evaluation

Backtesting with expanding window optimisation was used to assess the models, as seen in Fjg. 2. The quantity of data
will grow over time since training is done on a dataset that contains past information. When fresh data is included in the
model, backtesting enables a more accurate evaluation of its efficiency [44], [45].
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Fig. 2. Fundamental understanding of backtesting
with expanding window optimization.

With the use of measures like Mean Absolute Error (MAE), Root Mean Square Error (RMSE), R?, and Mean Absolute
Percentage Error (MAPE), the predicted data during backtesting was confirmed. By providing a simple way to grasp the
inaccuracy in units of the predicted variable, the MAE makes it easier to comprehend the accuracy of predictions. RMSE
is useful for identifying problems in prediction models when outliers are substantial, since it is more sensitive to outliers
than MAE. To further our knowledge, we may use the Multi-Analytical Relative Risk Error (MARRE) to evaluate how
well a model is doing in comparison to a base or benchmark model. Another metric that looks at how well the model
fits the data and how accurate its predictions are in comparison to the real values is the MAPE [32], [34].
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the series, yi is the actual value of the i-th observation, y; is the predicted value of the i-th observation, and N is the
number of observations.

3| Results

3.1| Urban Development

Along with a demographic chart of the city, Fig. 3 shows the evolution of PM2.5 concentration in Krakéw over a decade.
There has been a noticeable uptick in the population of Krakéw. There were two distinct periods of relatively slow
population growth over the time period under consideration (2010-2014 and 2015-2019, respectively). In contrast, the
PM2.5 trend line shows a downward trajectory over the last many years until seeing a reversal in 2015 and 2016. The
years 2013, 2014, 2017, and 2019 had the greatest drops in PM2.5 concentration.
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Fig. 3. The population of Krakéw (green) and the evolution of
PM2.5 levels (black/yellow) from 2010 to 2019.

Fig. 4 shows the evolution of city infrastructure from 2010 to 2019. The number of passenger vehicles on the road has
steadily increased over the last several years. Notably, in 2019, there were more than 650,000 vehicles registered in
Krakéw alone. Of them, somewhat more than 6,000 were electric cars, with about 3,000 being hybrids [42]. The city's
network of bike lanes has grown substantially, with a total of more than 50 km added in the last decade. Aside from a
steep drop in 2012, the number of miles of tram lines is fairly constant throughout the studied petiod [46]. There is a
discernible downward trend in the overall length of bus lines (also given in km) up to 2014, after which there is a definite
upward trend in the years that follow.

600
500
100
500
Population Bike lanes
175
150
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300
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360
Transit riders Road lanes
2800
2750
2500
2650
2690 5617 2013 2019 2015 2017 2019

Fig. 4. Trends in Krakow's urban infrastructure from 2010 to 2019,
illustrating annual changes in automobile registrations (blue), bike
lanes (green), tram lines (orange), and bus lanes (purple).

3.2| Energy Transition

Nearly 24,000 coal-fired combustion chambers, furnaces, and boilers were recorded in Krakéw in 2015 [37]. Both the
ones used for water heating and the ones connected to building insulation have been retired; the quantity of these
furnaces is shown in Fjg. 5. The number of renewable energy installations is also shown on the graph. From 2014 to
2016, the number of furnaces and boilers decommissioned was modest, but in 2017 and later years, it increased
significantly. There is no discernible rising trend in the number of installations powered by renewable energy sources
during the studied period; rather, their number stays modest and largely constant year-to-year, with the exception of
2018, when it almost reached 500.
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Fig. 5. Krakéw's initiative to reduce emissions (PONE) from 2014 to 2019.

Green represents the amount of new renewable energy sources, whereas

blue represents the number of coal boilers that have been dismantled
3.3| Machine-Learning Forecasts

Fig. 2 shows that the backtesting method with expanding window optimisation was used to train and assess all ML
models. Eighty percent of the available data, or the date October 20, 2022, at 01:00, was used as the beginning point for
the backtest. With a continuous 24-hour prediction horizon, the horizon was methodically moved by one time step.
When looking at Table 1 findings for several models, it's clear that linear models like DLinear, NLineat, and Ridge have
the most promise for PM2.5 forecasting. Overfitting was avoided during training by keeping an eye on the loss function,
in this case, MSE Loss. The DLinear model finished training after five epochs (Fig. 6).

Training and Validation Loss DLinear Model

Training loss
Walidation loss

10! -

MSELoss

10 —

Fig. 6. Loss function DLinear.

They have a high coefficient of determination (R?) and low levels of average errors (MAE and RMSE, for example). The
Ridge Regression model (R*=0.956) and the DLinear model (R>=0.947) are particularly noteworthy. With a time frame
of 168 samples (7 days), the deep learning and linear models that were adjusted for time series produced the best results.

Table 1. Model performance table.

Model MAE RMSE R2 MAPE MARRE
Ridge 2.666 3.867 0956 15.621 1.859
ARIMA  6.688 9.282 0.755 36.417 4.622
XGBoost 4.104 6.763 0.879 19.234 2.747
CatBoost 3.839 6.236  0.897 18.463 2.569
LGBM  4.863 7.445 0.85  27.175 3.34
GRU 517 7.79 0.831 25.855 3.582
LTSM 5258 7.704 0.83  27.206 3.682
NBEATS 12 17915 0.079 76.314 8.547
TCN 13.276 19.651 —0.108 68.585 9.448
TFT 3915 5971 09 17.675 2.71
NLinear 3.356 4.695 0.932 20.706 2.418
DLinear 2947 3.888 0.947 20.354 2.21
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In the case of fast PM2.5 concentration peaks, nonlinear models, including tree-based, gradient boosting, and deep
learning models, perform poorly. A comparison of the DLinear and XGBoost models is seen in Fzg. 7. These abrupt
changes are best handled by linear models. The bigger the peak, however, the more inaccurate the models were.

Comparison Linear to Nonlinear model for forecasting PM2.5
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Fig. 7. Evaluation of XGBoost and DLinear for PM2.5 forecasting.
4 | Discussion

This indicates that the examined metropolitan area's air pollution levels are unaffected by the city's fast population
expansion, especially after 2014. It is possible to build highly populated metropolitan areas while ensuring healthy, high-
quality air, according to this encouraging finding. Seeing individuals moving to Krakéw right now makes it all the more
crucial. The first anti-smog legislation in the nation was adopted by the provincial parliament of Malopolska in 2013,
which may have a direct correlation to the considerable decrease in pollution in Krakow throughout 2013 and 2014 [44].
One of the purposes of this law was to specify which fuels might be used inside the Krakéw Municipal District. Another
initiative that started at the same time was the PONE project, which provides subsidies to help pay for the replacement
of heating systems that use coal. The 2012 launch of the Krakéw Smog Alarm was a direct outcome of the many social
demonstrations and grassroots initiatives that preceded these legislative amendments [43], [47], [48].

Regardless of the rate of population increase, a correlation between household heating fuel type and air pollution is
obvious. However, a multi-dimensional analysis of the city's mobility system in relation to trends in population growth
and lower PM2.5 levels reveals fascinating insights. The number of registered cars, the majority of which have
combustion engines, has a positive correlation and is clearly a cause and effect. Nevertheless, there has been a downward
trend in PM2.5 pollution. The quantity of public transportation routes is directly proportional to the growth in individual
transportation. People may be less inclined to use public transit, particulatly buses, if the number of people driving alone
continues to rise at such a high rate. The idea of a smart city calls for a methodical expansion of the already steady
network of tram lines. Because bicycling not only offers extra health advantages from cardiovascular activity but also
actually reduces emissions from propulsion, the growth of bike networks has been a net gain. The negative link between
the number of passenger automobiles and the quantity of PM2.5 may, however, be readily misunderstood. The maximum
number of automobiles in a city is not always equal to the number of cars registered there. With more and more public
transport options, people may only need to utilise their automobiles for occasional outings rather than their daily
commutes. Second, research using isotopic [49] and geostatistical [50] methods demonstrated that heating with coal was
the most critical component.

Transport clearly has little effect on the overall trend of PM2.5 in Krakéw, according to these numbers. Various research,
including big data analysis, has proven that the rise in PM2.5 concentrations is substantially impacted by yeatly seasons
and is driven by the combustion of solid fuels, particularly coal, for heating houses and water. It should be noted that
these studies only look at aitborne particulate matter that is suspended; they don't take into account other volatile
chemicals that are harmful to health, the majority of which may be produced by vehicles. Above, we see that
transportation has a much lesser effect on PMx concentrations than home heating. Consequently, it is reasonable to use
data analysis and ML methods to forecast and optimally administer the city throughout the fall, winter, and spring seasons

in order to prevent adverse public health occurrences. In addition to addressing concerns about expanding access to
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public transit, which, as previously said, does not significantly impact this kind of pollution, these measures should also

take into account the need to restrict pollution from nearby cities, which is a major contributor [19], [43].

For the most part, when dealing with fast concentration peaks, linear models like DLinear, NLinear, and Ridge
Regression do a better job of forecasting PM2.5 pollution levels. These models are more robust against extreme values
because of the L2 regularisation method, which limits the magnitude of the coefficients. This is particulatly important
in winter, when pollution data might show abrupt shifts owing to unexpected input of pollutants. Data like this may be
challenging for nonlinear models like tree-boosted, Deep Neural Networks (DNNs), and gradient-boosted models
because they tend to overfit certain characteristics in the training data, such as unusual pollution patterns. Predicting
future changes in PM2.5 concentrations, particularly under dynamically changing external circumstances, may be
challenging due to the complex patterns that might be modelled as a consequence of overfitting. Therefore,
environmental planning and industrial laws may benefit from linear models' increased stability and predictability when

analysing time series data related to PM2.5 pollution.
5| Conclusions

Important insights have been uncovered by our study of the effects of many variables, including population expansion,
on PMx concentrations. There was a 3% rise in population in the region we looked at within the last decade. Even
though PMx concentrations fell by 40% due to this expansion, our statistics show that it had no adverse effect on air
quality. In spite of the increasing urban density since 2014, the region seems to have effectively controlled air quality.
The shift away from coal-based energy sources to renewable energy or natural gas has been the most important
component in improving air quality, especially with regard to PMx, according to our research. To everyone's surprise,
transit is not the main driver of changes in PMx pollution levels in the city, despite eatly speculation. Our research also
shows that there seems to be a two-speed energy transition happening for PMx mitigation: One speed is the change in
heating energy sources, which is a major contributor, and the other speed is the change in transportation. In addition,
smart city crisis response planning may greatly benefit from big data and automated prediction systems. When comparing
linear and nonlinear models for PM2.5 level prediction, the former often performs better. Linear models include
DLinear, NLinear, and Ridge Regression, whereas nonlinear models include TCN and traditional ARIMA. When there
are sudden shifts in the data, this performance really stands out. They are less vulnerable to outliers in pollution data
because of their stability and resistance to overfitting, which is caused by techniques like L2 regularisation, which limit

the magnitude of the coefficients.
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